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Abstract— Underwater images often suffer from severe color
distortion due to the challenging imaging environment. Under-
water image enhancement (UIE) techniques have been developed
to recover clear images, laying the foundation for various
underwater research. However, existing UIE methods tend to
produce fixed results without considering individual preferences
for different color tones. And there is no dataset with ground
truth (GT) in different tones. Therefore, we came up with the
possibility of using the currently popular multimodal methods to
control the color tone of enhanced images. This article proposes
a method for generating underwater enhanced images with cold,
warm, and normal tones using multimodal information supervi-
sion (MM-UIE). First, we leverage the relationship between text
prompts and images to supervise the generation of cold or warm
images. In addition, we introduce a 6-D color operator, which
not only enhances the tone control of underwater images but
also serves as a bridge between different tone images. Finally,
we also found that multimodal supervision methods can not only
control the color tone of underwater images but also improve
the quality of underwater image generation. Experimental results
demonstrate the superior performance of our method compared
to state-of-the-art (SOTA) techniques. Our codes will be publicly
available at https://github.com/perseveranceLX/MM-UIE.

Index Terms— 6-D color operator, application of the large-scale
generative model, multimodal learning, underwater image
enhancement (UIE).

I. INTRODUCTION

UNDERWATER images play an essential role in presenting
oceanic information, offering a unique perspective to

observe the wonders of the underwater world [1], [2], [3].
These images can provide information on organisms, terrains,
and environmental conditions in the ocean, contributing to
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Fig. 1. Visual comparison of (a) degraded input, (b) Water-Net, (c) Ucolor,
(d) ours-normal, (e) ours-cold, and (f) ours-warm in the UIEB dataset.

the protection and management of marine resources [4], [5],
[6], [7], [8]. In addition, underwater images can also be used
in fields such as scientific research, military reconnaissance,
and entertainment, bringing enormous value and significance
to humanity. However, underwater images often suffer from
degradation issues such as color distortion, low contrast, and
blurry details due to the complex and challenging imaging
environments.

Underwater image enhancement (UIE) and restoration
aim to improve the visual quality of degraded underwater
images. The current algorithms generate different styles of
enhancement results as shown in Fig. 1: (b) Water-Net [9];
(c) Ucolor [10]. For example, the results of Water-Net tend
to be cooler, while those of Ucolor tend to be warmer.
People who prefer cooler colors are more likely to prefer
the results provided by Water-Net. On the other hand, people
who are drawn to warmer colors tend to favor the results that
Ucolor produces. However, current UIE algorithms [9], [10],
[11] often overlook the subjective preferences and emotional
responses of people toward the enhanced images.

Indeed, people have different color preferences due to
personality variations, cultural backgrounds, and emotional
experiences, which influence their feelings toward colors. For
example, some people may prefer bright and vibrant colors
like red, orange, and yellow as they evoke a sense of pleasure
and excitement. Others may lean toward soft and elegant
colors such as blue, green, and purple, which lead to a feeling
of calmness and relaxation. With the advancements in large
models and multimodal algorithms, learning-driven image-
enhancement algorithms can also leverage useful information
from other modalities. Therefore, we propose a UIE algorithm
based on multimodal information supervision, which breaks
the dilemma of requiring complete paired dataset supervision
[as there is currently no dataset with different tone ground
truth (GT)].
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Fig. 2. Demonstration of the motivation, overview, and visual results of our proposed MM-UIE. Humans possess a unique ability to perceive color. We can
observe in our daily lives that some people prefer cool tones, while others prefer warm tones, and some are unconcerned with tones at all. Thus, as a task of
UIE, is it possible to generate enhanced images with different tones based on individual preferences?.

Fig. 3. Tone perception in the human visual system versus multimodal supervised 6-D color operator.

As shown in Fig. 2, our proposed method consists of
two parts: color enhancement, which corrects the color of
degraded underwater images, and detail enhancement, which
restores the texture details of degraded images. Both text and
image information are utilized to supervise the generation
of enhanced underwater images with cool and warm tones.
In addition, It also illustrates the results of different tones
generated by the proposed method. The contributions of this
article are summarized as follows.

1) We propose a method called the multimodal supervised
6-D color operator for UIE (MM-UIE) in Fig. 3, which is

the first method to achieve personalized UIE. By incor-
porating multimodal information supervision and a 6-D
color operator, our method is pleasing to the human
visual system and generates enhanced images with three
different tones according to the preferences of different
populations.

2) To control the color tone of the generated image,
this article proposes a novel cross-modal interaction
method. To the best of our knowledge, this method
is also the first multimodal approach in the UIE field.
We design a loss function for supervised learning by
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calculating the cosine distance between two modal
features.

3) Color cast is a significant problem in underwater images.
To address this issue and enhance the hue of the gen-
erated images, we propose a 6-D color operator based
on bilateral learning. This operator enables full-size
color adjustment on the input image through six channel
dimensions.

4) Comprehensive subjective and objective experiments
demonstrate that the proposed method effectively
enhances underwater images, obtains better colors and
fewer hazing artifacts, and exhibits clear advantages over
other state-of-the-art (SOTA) algorithms.

II. RELATED WORK

This section will introduce works related to the algorithm
proposed in this article. First, we will introduce the applica-
tion scenario of UIE and restoration and demonstrate some
representative methods. Then, we will introduce the core of
this article multimodal information supervision and summarize
how current enhancement algorithms apply multimodal means.

A. Underwater Image Enhancement
Existing UIE algorithms can be roughly divided into three

types, that is, prior-based, physical-model-based, and learning-
based methods.

Prior-based and physical models-based methods are tra-
ditional approaches. Prior-based methods tend to directly
adjust the pixel values of the input image. For example,
Ancuti et al. [12] designed a novel white balance and
fusion model, incorporating red channel priors and grayscale
world assumptions for white balance. Zhang et al. [13]
performed color correction based on histogram priors and
combined it with contrast enhancement to emphasize details.
Physical-model-based methods are often performed by solving
imaging models. Song et al. [14] recovered underwater images
based on underwater optical imaging models and proposed
a dark channel prior model suitable for underwater scenes.
Zhuang et al. [15] used hyper-Laplacian reflection priors for
the retinex variational model, combining priors and phys-
ical models. To enhance underwater polarization images,
Shen et al. [16] presented a polarization-driven method, which
improves the contrast of underwater images, and they created a
comprehensive benchmark for underwater polarization images.
Although these traditional methods work well in some specific
degraded images, for a large number of uncertainly degraded
underwater images, these traditional algorithms are less robust,
the enhancement effect is unstable, and some images still have
color casts, artifacts, and so on.

In recent years, learning-based image enhancement algo-
rithms have become mainstream [17], [18], [19], [20], [21].
Learning-based UIE methods can be mainly divided into two
types: convolutional neural networks (CNNs)-based [9], [10],
[22] and generative adversarial networks (GANs)-based [11],
[23], [24], [25] methods. Learning-based methods learn the
mapping from degraded images to clear images end-to-end,
without the need for prior or physical models. UWCNN [26]
is the first data-driven model, but its results exhibit severe
color cast due to complete training based on synthetic datasets.
Li et al. [9] fused the three enhanced results of traditional
algorithms (i.e., white balance, gamma correction, and his-
togram equalization) through deep neural networks, resulting

in fine visual quality. They also proposed Ucolor [10], which
utilizes different color spaces for collaborative enhancement.
To generate visually pleasing results, FUnIE-GAN [23] is
based on conditional GAN and considers global similarity and
content consistency through loss functions. As for polarization
images, the U2PNet [27] proposes an unsupervised restoration
method that analyzes the relationship between the transmission
map and the degree of polarization. By incorporating intensity
ratio constraints, the loss function preserves details and colors
in the image. However, most current models rely on GT for
learning, and their enhanced images neglect people’s prefer-
ences, such as some people liking cold-tone images, while
others like warm-tone images. Furthermore, most algorithms
utilize a deep unrolling-based architecture that results in a
greater number of parameters and a slower testing speed
caused by multiple iterations.

B. Application of Multimodal Information
With the advent of large models, cross-modal learning has

gained widespread attention, particularly between vision and
text. The CLIP model [28] is a multimodal model based on
contrastive learning, which can learn the matching relationship
between text and image pairs. Recently, many works have
applied CLIP models for supervised learning of images and
videos. For example, Yang et al. [29] used text prompts as pri-
ors to enhance low-light images, resulting in visually pleasing
results. Ju et al. [30] unified multiple tasks by adding a set of
learnable vectors to the image-based visual multimodal model.
Liang et al. [31] proposed a backlight image enhancement
training scheme combined with the CLIP model: Image and
text encoders using pretrained CLIPs encode backlit and well-
illuminated images, as well as learnable cue pairs (positive
and negative samples) into the latent space.

Tone perception is an advanced function of the human visual
system. To achieve enhanced results with different tones,
we have come up with the idea of using text information to
supervise learning through multimodal models. Moreover, due
to the U-Net baseline for generating the 6-D color operators,
our network is lightweight when compared with deep rolling-
based models.

III. METHODOLOGY

The proposed MM-UIE consists of two stages, that is, color
enhancement and detail enhancement. In this section, we will
introduce these two stages and the proposed loss function for
cross-modality interactive constraint.

A. Multimodal Information for Tone Control
UIE is a challenging task, and most of the enhancement

results are unidirectional. It is important to determine whether
our enhanced images meet the preferences of our users. Based
on this motivation, we have designed a novel UIE algorithm
that can generate different tones. Enhanced images with warm
and normal tones to meet user preferences.

The current UIE dataset lacks GT with multiple tones.
Therefore, we utilize a pretrained CLIP [28] model for cross-
modal interaction, which can establish a connection between
texts and images in the feature domain.

Given different tone enhanced results as Ycol and Ywar,
we use the image encoder αimg to generate image features

W img
col = αimg(Ycol)W img

war = αimg(Ywar). (1)
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Fig. 4. Visual results comparison in different prompts. Scores range
from 1 to 3, and the higher the score, the more appealing it will be to the
viewer. (Left to right) x are “cold,” “normal,” and “warm,” respectively.

And text encoder αimg for generate text features:

W tex
col = αtex(Zcol)W tex

war = αtex(Zwar) (2)

where we use the CLIP-RN50 baseline as the image and text
encoder according to [29].

Hence, the loss function for tone control can be represented
as follows:

Lcol
mm

(
W img

col ,W tex
col

)
=

〈
W img

col ,W tex
col

〉
∥∥∥W img

col ·W tex
col

∥∥∥
Lwar

mm

(
W img

war ,W tex
war

)
=

〈
W img

war ,W tex
war

〉
∥∥∥W img

war ·W tex
war

∥∥∥ (3)

where ⟨, ⟩ represents the cosine distance between two features,
and ∥.∥ means the L1 norm.

Influenced by [32], we use different text prompts for text
tensor generation in Fig. 4. To find the feelings of different
groups of people, we searched for 60 volunteers, including
20 volunteers who prefer cold tones and 20 volunteers who
prefer warm tones. Then, the remaining 20 volunteers did not
have a clear preference for color tones. The average score
of each image is annotated in Fig. 4. Obviously, when the
prompt is “x-tone photo,” the scores for each color tone are
relatively balanced. Therefore, we choose this form as the
prompt. To enhance image quality, we also add the image
loss. It includes L1 and LVGG [10]

L1
img = L1(Ycol,Ygt) + L1(Ynor,Ygt)

+ L1(Ywar,Ygt)

LVGG
img = LVGG(Ycol,Ygt) + LVGG(Ynor,Ygt)

+ LVGG(Ywar,Ygt). (4)

Hence, the total losses are as follows:

Ltex = Lcol
mm

(
W img

col ,W tex
col

)
+ Lwar

mm

(
W img

war ,W tex
war

)
Ltotal = λa · L1

img + λb · LVGG
img + λc · Ltex (5)

where λa , λb, and λc are three weights set to 3, 0.15, and
0.01, respectively.

B. Color Enhancement
In this article, a 6-D color operator is designed to achieve

color enhancement. Efficient bilateral learning model, which
has been successfully applied for related tasks such as image
dehazing [33]. However, due to the severe degradation of
underwater images and the scattered distribution of degra-
dation at different pixel points, traditional bilateral learning
cannot handle the various and complex color distortions.
Therefore, we propose a full-size 6-D color operator, which
can capture the color adjustment operator of the entire under-
water image.

Given a degraded underwater image X composed of R,
G, and B three channels. To express the information of the
original image more completely and enhance color effectively,
we have modified the original RGB three channels as follows:[ R′

G ′

B ′

]
= S ·

[ R
G
B

]
, S =

[ M 0 0
0 N 0
0 0 P

]
(6)

where R′, G ′, B ′ denote transformed RGB channels, and S
represents a mapping diagonal matrix with three rows and
three columns. Then, (6) can be rewritten as follows:[ R′

G ′

B ′

]
=

[ M 0 0
0 N 0
0 0 P

]
·

[ R
G
B

]

=

[ M − 1 0 0
0 N − 1 0
0 0 P − 1

]
·

[ R
G
B

]
+

[ R
G
B

]

= S ′
·

[ R
G
B

]
+

[ R
G
B

]
(7)

where S ′ denotes generalized matrix from S . The result is
similar to y = f (x)+x , so we use a convolutional layer U and
a residual connection for simulating the color transformation
process as

X ′
= U(X ) + X ,X ∈

[ R
G
B

]
, X ′

∈

[ R′

G ′

B ′

]
. (8)

The original R, G, B and transformed R′, G ′, B ′ are com-
bined to six dimensions Tc for color adjustment, as follows:

Tc ∈
[

R R′ G G ′ B B ′
]T

. (9)

In Fig. 5, we first use three U-Net to generate the 6-D
color operators for normal tone, cold tone, and warm tone,
respectively,

Ccol = Gcol(X ), C0
nor = Gnor(X ), Cwar = Gwar(X ) (10)

where Gcol, Gnor, and Gwar denote cold-tone U-Net, normal-tone
U-Net, and warm-tone U-Net, respectively, and Ccol, C0

nor, and
Cwar are generated 6-D color operators. The detailed diagram
of these three U-Net is shown in Fig. 6. Moreover, Table I
indicates the memory usage consumed by different blocks.

Fig. 7 shows the generation process of different tone images.
The details of the color and detail enhancement are displayed
in Fig. 8. The normal-tone operator should well balance the
warm and cold tones, we thus fuse three types of 6-D operators
to further improve the normal-tone operator, as follows:

Cnor = Fope
(
Ccol, C0

nor, Cwar
)

(11)

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18,2024 at 03:59:24 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: TOWARD INDIVIDUAL TONE PREFERENCE IN UNDERWATER IMAGE ENHANCEMENT 4212211

Fig. 5. Generation process of the 6-D color operator.

Fig. 6. Detailed diagram of the cold tone U-Net, normal tone U-Net, and
warm tone U-Net, and C represents the number of channels. Conv denotes
the convolutional layer. LReLU represents the leaky ReLU function, and IN
is the instance normalization.

TABLE I
MEMORY USAGE COMPARISON OF DIFFERENT BLOCKS (THE IMAGE SIZE

IS 256 × 256). UP, LATENT, AND DOWN REPRESENT THE UP BLOCK,
LATENT BLOCK, AND DOWN BLOCK, RESPECTIVELY

which also confirms that the proposed 6-D color operator can
serve as a bridge connecting three different tones.

The main function of the operator fusion network Fope is
to fuse 6-D color operators with three different tones
(Ccol: the operator for the cold tone, C0

nor: the first operator for
the normal tone, and Cwar: the operator for the warm tone).
Hence, we design a lightweight network Fope to generate
the final normal-tone operator Cnor. Through the operators for
warm and cold tones and the first operator for the normal tone,
the lightweight network Fope can combine their respective
excellent features and refine them in Fig. 9.

We use the affine function A to combine the operators and
six channels for color enhancement

Vcol = A · (Ccol, Tc), Vnor = A · (Cnor, Tc)

Vwar = A · (Cwar, Tc) (12)

Fig. 7. Demonstration of different tone image generation.

TABLE II
EVALUATIONS OF DIFFERENT METHODS ON THE UIEB-100 TEST SET

IN TERMS OF FULL-REFERENCE (PSNR AND SSIM) AND
NO-REFERENCE (UCIQE AND UIQM) METRICS. RED,

BLUE, AND UNDERSCORED BOLD FONTS
INDICATE THE BEST THREE RESULTS

where Vcol, Vnor, and Vwar denote three features after color
enhancement. Then, the details of these operations: A ·

(Ccol, Tc); A · (Cwar, Tc); A · (Cnor, Tc) are as follows:

A · (Ccol, Tc) = Cat

 ∑
η1∈1,2,3,4,5,6

Cη1
colTc + C7

col ,

∑
η2∈8,9,10,11,12,13

Cη2
colTc + C14

col,
∑

η3∈15,16,17,18,19,20

Cη3
colTc + C21

col


(13)

A · (Cnor, Tc) = Cat

 ∑
η1∈1,2,3,4,5,6

Cη1
norTc + C7

nor ,
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Fig. 8. Indication of (left) color and (right) detail enhancement.

Fig. 9. Demonstration of the operator fusion network. Conv denotes the
convolutional layer, LReLU and Sigmoid represent the leaky ReLU and
sigmoid functions, respectively, IN is the instance normalization, andO means
the concatenation.

Fig. 10. Indication of three CNN-based multifeature fusion networks. Conv
denotes the convolutional layer. LReLU, Sigmoid, and Tanh represent the
leaky ReLU, sigmoid, and tanh functions, respectively, IN is the instance
normalization, and O means the concatenation.

∑
η2∈8,9,10,11,12,13

Cη2
norTc + C14

nor,
∑

η3∈15,16,17,18,19,20

Cη3
norTc + C21

nor


(14)

A · (Cwar, Tc) = Cat

 ∑
η1∈1,2,3,4,5,6

Cη1
warTc + C7

war ,

∑
η1∈8,9,10,11,12,13

Cη2
warTc + C14

war,
∑

η1∈15,16,17,18,19,20

Cη3
warTc + C21

war


(15)

where Ccol/war/nor ∈ R21×h×w, Tc ∈ R6×h×w.

Fig. 11. Visual comparison of the cold-tone results, the warm-tone results,
and the reference results in the UIEB dataset. (a) Input image. (b) Ours-cold.
(c) Ours-warm. (d) Reference image.

C. Detail Enhancement
The goal of detail enhancement is to restore information

such as texture that has been degraded in the image, thereby
improving the visual quality. We use the UIE model Boths [34]
as the baseline to preliminarily enhance the details as

Ecol = Dcol(X ), Enor = Dnor(X ), Ewar = Dwar(X ) (16)

where Ecol, Enor, and Ewar denote results of three same detail
enhancement baseline modules Dcol, Dnor, and Dwar, respec-
tively, as shown in Fig. 8. Then, we concatenate the color
enhancement feature V , the detail enhancement feature E , and
six channels Tc through three multifeature fusion networks,
as follows:

Ycol = F col
fea (O(Vcol, Ecol, Tc))

Ynor = Fnor
fea (O(Vnor, Enor, Tc))

Ywar = Fwar
fea (O(Vwar, Ewar, Tc)) (17)

where O denotes the concat operation, and Ycol, Ynor,
and Ywar are three different tone-enhanced results. We use
three CNN-based multifeature fusion networks (F col

fea , Fnor
fea ,

and Fwar
fea ) to fuse the features and generate the final enhanced

results of three different tones (Ycol: the final results for the
cold tone, Ynor: the final results for the normal tone, and
Ywar: the final results for the warm tone). In Fig. 10, these
three CNN-based multifeature fusion networks can adaptively
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Fig. 12. Visual comparison of the UIEB-100 testset. (a) Input image. (b) GDCP [35]. (c) HLRP [15]. (d) NUDCP [14]. (e) ACDC [36]. (f) ERH [37].
(g) Fusion [12]. (h) UWCNN [26]. (i) URSCT [38]. (j) L2UWE [39]. (k) FUnIE-GAN [23]. (l) LCNet [40]. (m) CLUIE-Net [41]. (n) TOPAL [42].
(o) Water-Net [9]. (p) UICoE-Net [43]. (q) Ucolor [10]. (r) Ours-normal. (s) Ours-warm. (t) Ours-cold.

combine the detail results (Ecol, Enor, and Ewar), color correction
results (Vcol, Vnor, and Vwar), of three tones with 6-D base
channels Tc. Fig. 11 shows the final results with different tones
in the UIEB dataset [9].

IV. EXPERIMENTS

Implementation Details: The proposed MM-UIE is trained
with an AdamW optimizer for 180 epochs. The initial learning
rate is set to 0.0001 and then halved after every 30 epochs. The
batch size is set as 4. All training images have been cropped
to 224 × 224 patches and then normalized to range [0, 1].

The experiments are implemented with the PyTorch platform
on two RTX3090 GPUs.

Datasets: The UIEB [9] and SQUID [44] datasets are two
commonly used UIE benchmark sets. There are 950 real
underwater images included in the UIEB dataset, which has
been collected from the Internet. As GTs, the author man-
ually selects images with better visual results following the
processing of different algorithms. To obtain GT, different
enhancement algorithms are implemented and then images
with better visual quality are manually selected as GTs. As for
the SQUID dataset, 57 pairs of stereo images are included
in the database, two of which are located in the Red Sea

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 18,2024 at 03:59:24 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 13. Visual comparison of the SQUID-100 test set. (a) Input image. (b) FUnIE-GAN [23]. (c) LCNet [40]. (d) CLUIE-Net [41]. (e) TOPAL [42].
(f) Water-Net [9]. (g) UICoE-Net [43]. (h) Ucolor [10]. (i) Ours-normal. (j) Ours-warm. (k) Ours-cold.

TABLE III
EVALUATIONS OF DIFFERENT METHODS ON THE UIEB-890 TEST SET IN TERMS OF FULL-REFERENCE (MSE, RMSE, PSNR,

SSIM, AND LPIPS) AND NO-REFERENCE (PI, MA, NIQE, UCIQE, AND UIQM) METRICS. RED, BLUE,
AND UNDERSCORED BOLD FONTS INDICATE THE BEST THREE RESULTS

(representing tropical waters) and two in the Mediterranean
Sea (representing temperate waters). This dataset does not
contain GTs.

We first perform data augmentation on the UIEB dataset by
using horizontal and vertical flipping and rotation at angles of
A ∈ [0, π/2, π, 3π/2]. A total of 12 680 training samples are
obtained after augmentation. We select 990 images for testing,
and the remaining samples are used for training. Among
the 990 test images, 100 images with severe degradation are
specifically selected to conduct a difficult UIEB-100 test set,
and the other 890 images make up a UIEB-890 test set.
In addition, 100 images are extracted from the SQUID dataset
for the cross-dataset testing, namely the SQUID-100 test set.

Metrics: For full-reference evaluation, we use five com-
monly used metrics, that is, MSE, RMSE, PSNR, SSIM,
and LPIPS [45]. These full reference indicators evaluate the
distance between the image and the GT, which can measure
the distortions. For no-reference indicators, we used another
five assessments, that is, PI [46], MA [47], NIQE [48],
UCIQE [49], and UIQM [50]. Compared with distortion
measurements, these indicators focus on the visual quality,
contrast, and color level of images. Among them, UCIQE
and UIQM are two unique indicators for underwater images,
which can comprehensively evaluate enhanced underwater
images.

Comparison Methods: To verify the effectiveness of the pro-
posed method, 16 UIE methods are selected for comparisons,
including six traditional algorithms of GDCP [35], HLRP [15],

NUDCP [14], ACDC [36], ERH [37], and Fusion [12], and ten
SOTA learning-based models of UWCNN [26], URSCT [38],
L2UWE [39], FUnIE-GAN [23], LCNet [40], CLUIE-
Net [41], TOPAL [42], Water-Net [9], UICoE-Net [43], and
Ucolor [10].

A. Qualitative Evaluation
The subjective results of this method on the UIEB-100

and SQUID-100 test sets are illustrated in Figs. 12 and 13,
respectively. From these figures, we can obtain the following
observations. First, traditional algorithms can improve color
degradation, resulting in enhanced results without obvious
greenish or bluish colors. However, these processed images
often suffer from monotonous colors and severe noise in the
details. The GDCP and NUDCP algorithms have made some
improvements in brightness, but they tend to produce uneven
fogging phenomena and color distortion. The ACDC algorithm
produces grayish-white images with poor visual effects. The
HLRP algorithm tends to overexpose the images, while the
ERH and Fusion algorithms produce darker results. In terms
of learning-based methods, most of them exhibit better color
and well-processed details compared to traditional methods.
However, their results still contain some limitations. URSCT
and L2UWE struggle to handle severe color cast. FUnIE-GAN
and LCNet tend to introduce a red color cast to the enhanced
image, with LCNet exhibiting severe red artifacts. CLUIE-Net,
TOPAL, and UICoE-Net still exhibit some color degradation
in certain results. In contrast, our proposed MM-UIE not only
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TABLE IV
EVALUATIONS OF DIFFERENT METHODS ON THE SQUID-100 TEST SET

IN TERMS OF NO-REFERENCE (UCIQE AND UIQM) METRICS.
RED, BLUE, AND UNDERSCORED BOLD FONTS

INDICATE THE BEST THREE RESULTS

TABLE V
ABLATION STUDY ON THE UIEB-100 TEST SET IN TERMS OF
FULL-REFERENCE (PSNR AND SSIM) AND NO-REFERENCE
(UCIQE AND UIQM) METRICS. BOLD FONTS INDICATE THE

BEST RESULTS. THREE PIECES OF DATA CORRESPOND
TO NORMAL-, WARM-, AND COLD-TONE RESULTS

achieves good results on the UIEB-100 and SQUID-100 test
sets but also provides users with enhanced results in three
different tones.

B. Quantitative Evaluation
In this section, we will compare our MM-UIE and SOTA

methods quantitatively. Table II shows that we evaluate
UIEB-100 using four metrics: PSNR, SSIM, UCIQE, and
UIQM. Accordingly, the method proposed in this article has
advantages in terms of PSNR, SSIM, and UCIQE metrics.
In addition, Table III shows some excellent algorithms tested
on UIEB-890. This test is more comprehensive and specific,
showing clearly the MM-UIE characteristics. In Table IV,
eight of the ten metrics of MM-UIE exceed other algorithms.
According to the SQUID-100 test set, our proposed method
still has significant advantages over excellent algorithms in
terms of both UCIQE and UIQM metrics. Overall, the
MM-UIE proposed in this article performs well in nearly ten
metrics across three datasets, with improved color performance
and enhanced image quality.

C. Ablation Study
An ablation experiment was designed to demonstrate the

efficacy of the multimodal information supervision and 6-D

Fig. 14. Visual comparison of the ablation study. Three pieces of the
figure correspond to normal-, warm-, and cold-tone ablation study results.
(a) Input image. (b) With 3-D color operator. (c) Without a 6-D color operator.
(d) Without warm information supervision. (e) Without cold information
supervision. (f) Normal/warm/cold tone results.

color operator proposed in this article. Table V and Fig. 14
show ablation results, w/o means without. First, we can
observe through w/o warm supervision and w/o cold super-
vision that there is a significant improvement in warm or
cold-tone results directly supervised by multimodal informa-
tion compared to none, and it can affect normal tone image
quality. The 6-D color operators of normal-tone results also
contain information about warm and cold tones. An indirect
explanation of multimodal information supervision can control
image tone and improve image quality. In addition, we can
observe that the use of w/o 6-D color operator results in a
certain decrease in the effect. In contrast, the use of the 3-D
color operator is not as effective as a 6-D color operator,
indicating that the 6-D color operator has a significant effect
on image color adjustment.

V. CONCLUSION

This article proposed a novel framework for personalized
UIE with different tones. The proposed model consists of two
stages, that is, color enhancement and detail enhancement. For
color enhancement, a multimodal supervised 6-D color oper-
ator is presented. By using text information and multimodal
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interactive learning, the proposed method can control the tone
of enhanced images and can learn to generate different tones
through the same GT without tone information. Experimental
results demonstrate that the proposed method can outperform
SOTA methods in both subjective and objective evaluation.

In summary, it has been shown that the method we pro-
pose can generate enhancement results of different tones in
accordance with individual preferences, which can satisfy the
needs of groups of people who like cold tones and warm tones
and have no preference for tones. However, the perception of
color is also influenced by their emotions. People tend to prefer
warm colors when they are passionate, and cool colors when
they are calm. As our method cannot detect the emotions of
the viewer, we are unable to change the enhancement results
of different tones as necessary. A future project aims to design
an interactive system that adapts to the emotional changes of
the viewer and provides more accurate enhancement results in
response.
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