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Abstract— Since light is scattered and absorbed by water,
underwater images have inherent degradation (e.g., hazing,
color shift), consequently impeding the development of remotely
operated vehicles (ROVs). Toward this end, we propose a novel
method, referred to as Best of Both Worlds (Boths). With parame-
ters of only 0.0064 M, Boths can be considered a super lightweight
neural network for underwater image enhancement. On the
whole, it has three levels: structure and detail features; pixel and
channel dimensions; high- and low-frequency information. Each
of these three levels represents “Best of Both Worlds.” Initially,
by interacting with structure and detail features, Boths can focus
on these two aspects at the same time. Further, our network can
simultaneously consider channel and pixel dimensions through
3-D attention learning, which is more similar to human visual
perception. Lastly, the proposed model can focus on high- and
low-frequency information, through a novel loss function based
on the wavelet transforms. Upon subsequent analysis and eval-
uation, Boths has shown superior performance compared with
state-of-the-art (SOTA) methods. Our models and datasets are
publicly available at: https://github.com/perseveranceLX/Boths.

Index Terms— 3-D attention learning, high- and low-frequency
loss functions, structure and detail interaction, underwater image
enhancement.

I. INTRODUCTION

AVARIETY of remote sensing techniques are success-
fully employed in underwater vision scenes [1], notably

in visually guided remotely operated vehicles (ROVs) [2].
Compared with autonomous underwater vehicles (AUVs) [3],
ROV is more suitable for working in complex, narrow, and
unknown environments. Also, it plays a crucial role in prac-
tical applications such as underwater archeology [4], marine
ecological exploration [5], and deep-sea target detection [6].
During visual-guided research, acquiring images of high qual-
ity is an essential step. However, underwater images are
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often extremely degraded. In the ocean, red, green, and blue
light have different attenuation rates, whereas red light is the
fastest, so the underwater image generally looks blue or green.
Moreover, suspended particles in the water absorb light energy
and change its path, resulting in low contrast and blurring.
This complex degradation makes it difficult to obtain clear
underwater images [7]. Hence, it is urgent and meaningful
to design a fast and effective underwater image enhancement
algorithm for ROV.

For the above imaging characteristics, two types of
underwater image enhancement are commonly employed:
prior-driven and deep learning-driven methods. Some of
the prior-driven methods apply decomposition and synthesis
tools to enhance underwater images through multiple stages.
Cho et al. [8] extract the image detail layer through multi-
band decomposition and refine it with a Laplacian mod-
ule [model-assisted multiband fusion (MAMF)]. While this
algorithm enhances detail, the image has an overall color cast.
Yuan et al. [9] adopted contour bougie morphology to separate
the scenes, and added various operations to obtain a better
outline [Contour Bougie Morphology and Adaptive Contrast
Stretch (ACS)]. They also proposed a fusion-based texture
enhancement method [texture enhancement model based on
blurriness and color fusion (TEBCF)] [10] for real-world
underwater images. These two approaches can optimize the
structural layer and the texture layer of the image respectively.
Despite the favorable results of the prior-driven methods, the
estimation of prior conditions limits their performance.

With the advent of deep learning in the 21st century,
convolutional neural networks (CNNs) and generative adver-
sarial networks (GANs) are extensively implemented in low-
level vision tasks. For the purpose of preserving the image
content while also removing the image noise, Chen et al. [11]
developed a GAN-based network [GAN-based restoration
scheme (GAN-RS)]. Li et al. [12] proposed a CNN framework
(Water-Net) with adaptive fusion of multiple preprocessed
images. Islam et al. [13] presented a conditional GAN [fully-
convolutional conditional GAN-based model (FunIE-GAN)]
with a novel loss, which controls color, texture, and style of
the generated images. Li et al. [14] designed a CNN-based
network (Ucolor) to solve color casts and low contrast, enhanc-
ing underwater images by using multicolor space learning.
To make the algorithm lightweight, Jiang et al. [15] presented a
cascaded CNN [lightweight cascaded network (LCNet)] based
on Laplacian pyramids. Recently, considering that underwater
images taken in similar scenes tend to degrade generally,
Qi et al. [16] proposed a coenhancement network [underwater
image co-enhancement network (UICoE-Net)] that relies on
CNN-based siamese learning.

However, deep learning-driven methods are often large and
ill-suited to underwater robots (e.g., ROV). Few methods
have been devoted to creating powerful models for enhancing.
Furthermore, due to underwater imagery representing a more
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Fig. 1. Overview of the Boths. Conv, Concat, LReLU, and IN means
convolution, concatenation, leaky ReLU, and instance normalization. H , W ,
and C represent height, width, and number of channels, respectively.

challenging issue (than atmospheric imagery), underwater
image enhancement by learning still remains a significant area
for development.

As shown in Fig. 1, we seek to address these difficulties with
a unique super lightweight neural network called Best of both
worlds (Boths) that has the potential to enhance underwater
images. Following is a summary of the principal implications.

1) Structure and Detail Features: We propose the structure
and detail decomposition (SD-D) which divides the
input into two parts. Then, these features are combined
through structure and detail interactive 3-D attention
(SD-I3A). In addition, we also present a module [fusion
module (FM)] to fuse the outputs of multilevel SD-I3A.

2) Pixel and Channel Dimensions: Typically, attention to
pixels and channels are separate concerns. In actuality,
they are closely related in terms of human visual per-
ception. Three-dimensional attention learning in Boths
is our response. It accounts for the pixel and channel
dimensions by a single weight.

3) High and Low Frequency Information: Based on the
wavelet transforms, we design the wavelet mse (WMSE)
loss. In conjunction with other losses, the network can
focus on high- and low-frequency information when it
comes to the training process.

According to our qualitative analysis and quantitative eval-
uation, Boths is a highly effective model. In light of the
modest parameters and floating point of operations (FLOPs)
(0.0064 M and 0.4256 G, respectively), our method can be
easily deployed in ROV.

II. PROPOSED METHOD

The proposed Boths is shown in Fig. 1. SD-D divides the
input into two paths, then performs multidimensional learning
of the two paths by SD-I3A, and finally fuses the multilevel
SD-I3A results by FM.

A. Structure and Detail Decomposition
A retina contains two types of cells [17], midget and

parasol cells, whose receptive fields differ. We employ two
different dilated convolutions d1 (kernel size = 3, stride = 1,
dilition = 1, padding= 1) and d2 (kernel size = 3, stride = 1,
dilition = 5, padding = 5) to simulate them in Fig. 2.
By subtracting them, we obtain the guided map Dg

Dg = σ(δ(d1(ARGB))− δ(d2(ARGB))) (1)

where σ and δ are the sigmoid and leaky rectified linear unit
(LReLU) functions. Structural features have a low contrast,
whereas detailed features display a high contrast. So we
multiply the guided map with ARGB to obtain the detail map
Adet

Adet = Dg × ARGB (2)

then, the remaining structure map Astr can be represented as

Astr = ARGB − Adet. (3)

Fig. 2. Architecture of the SD-D, SD-I3A. Conv1 and Conv2 are two different
dilated convolutions d1 and d2, respectively. H , W , and C represent height,
width, and number of channels, respectively.

Due to the lightweight nature of Boths, the SD-D does
not employ large-scale convolutions or very deep networks
to expand its receptive field.

B. Structure and Detail Interactive 3-D Attention
At present, most of the existing attention mechanisms

are concerned with estimating domains separately [18], but
these domains often participate in human visual perception
simultaneously [19]. Guided by Yang et al. [20] using neural
experience to develop the attention module [simple, parameter-
free attention module (SimAM)], we adopt their method for
generating weights and propose the SD-I3A in Fig. 2. Observa-
tion indicates that structural features are often degraded more
severely. We obtain 3-D attention weights Wstr for the structure
map Astr

Wstr = G(Astr) (4)

where G means the weights generation. Then, we multiply
the 3-D weights Wstr of the structure map Astr by the detail
map Adet

RI3A = Wstr × Adet. (5)

RI3A is the result of SD-I3A. Thus, when processing structural
and detailed features, the former can be emphasized. In order
to gradually upgrade structural features processing, we use
the output of the previous level as a structure map in Fig. 1.
Aside from improving results, more SD-I3A will reduce the
efficiency of algorithm operation. To achieve higher produc-
tivity, we use only a three-level SD-I3A.

C. Fusion Module
We propose a module to fuse the multilevel SD-I3A results

as shown in Fig. 1. Specifically, R1
I3A, R2

I3A, R3
I3A are the output

from three level SD-I3A. We put the concatenation of them
Oconcat ∈ R

48×h×w into a convolution e1 (kernel size = 3,
stride= 1, padding= 1) to obtain the weight coefficient matrix
W ∈ R

3×h×w

Oconcat = C
[
R1

I3A, R2
I3A, R3

I3A

]
(6)

W = e1(Oconcat) (7)

where C means concatenation. We obtain the fusion result
by calculating the hadamard product of the features RI3A and
weight matrix W

FI3A = W1 ◦ R1
I3A +W2 ◦ R2

I3A +W3 ◦ R3
I3A (8)

where ◦ means the hadamard product, R1
I3A, R2

I3A, R3
I3A are

the three level outputs, W1, W2, W3 ∈ R
1×h×w represent the

weight matrix W of each channel.
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Algorithm 1 WMSE Loss
input : Two images B(I ), GT , factor f , times n
output: LWMSE

1 (B(I ))L L
0 , (GT )L L

0 = B(I ), GT ;
2 LWMSE = 0;
3 a = f ;
4 for i ← 1 to n, i ++, do

// Wavelet transfoms
5 (B(I ))LL

i , (B(I ))LH
i , (B(I ))HL

i , (B(I ))HH
i =

DWT((B(I ))LL
i−1);

6 (GT )LL
i , (GT )LH

i , (GT )HL
i , (GT )HH

i =
DWT((GT )LL

i−1);
// Calculate MSE loss for LH, HL,

HH parts
7 LWMSE+ = [LMSE((B(I ))LH

i , (GT )LH
i )+

LMSE((B(I ))HL
i , (GT )HL

i )+
LMSE((B(I ))HH

i , (GT )HH
i )] · a;

8 a = a × a;

// Calculate MSE loss for the LL part
9 LWMSE+ = LMSE((B(I ))LL

i , (GT )LL
i ) · a;

10 return LWMSE;

D. Loss Function

In our network, we aim to learn mappings between input I
and ground truth (GT), the loss function consists of two terms:
WMSE loss and other losses.

1) WMSE Loss: High- frequency information is often
ignored, Boths enjoys a WMSE loss LWMSE to consider
high- and low-frequency information. Algorithm 1 shows the
detailed steps of LWMSE. Four parts are derived using wavelet
transforms

(M)LL, (M)LH, (M)HL, (M)HH = DWT(M) (9)

where (M)LH, (M)HL, and (M)HH are high frequency parts,
(M)LL is the low frequency part. B(I ) are images generated
by Boths. We set the factor f to 0.25, times n to 2.

2) Other Losses: Following [13], we use L1 loss and LV GG

loss to measure the pixel and content similarity respectively,

L1 = �B(I )− GT�1 (10)

LVGG = �φk(B(I ))− φk(GT )�2. (11)

φk(.) represents the features extracted by VGG19 [21].
3) Asynchronous Training Mode: Inspired by adaptive

learning attention network (LANet) [18], we employ their
mode to make the network converge faster. Our Boths is
trained through the following two stages. In the first stage,
we utilize LWMSE

LI = LWMSE. (12)

In the second stage, the loss is the linear superposition of
L1 and LVGG

LII = L1 + λLVGG (13)

where λ is a constant, we set it to 0.1.

TABLE I

NUMBER OF TRAINING AND TESTING SAMPLES IN MIX BENCHMARK

III. EXPERIMENT

A. Implementation Details

1) Datasets: For training and full-reference assessment,
we use the UVE-38K [16], enhancement of underwater
visual perception dataset (EUVP) [13] and underwater image
enhancement benchmark (UIEB) [12] datasets. Due to insuf-
ficient samples in UIEB, we expanded the original dataset.
We rotate the image at various angles. The angles A are 0, π/2,
π , and 3π/2. Later, we mirror the four images. The flips F are
NoFli p, H ori zontal Fli p and V ertical Fli p. Hence, each
image will get 12 augmented results. We finally get a large-
scale benchmark containing 26 549 paired images. We name
our benchmark as MIX.1 Table I shows the division of training
and testing samples. To assess the results of Boths in complex
environments, we use T40,2 U45 [22] and C60 [12] for no-
reference assessment. Among them, T402 is an underwater
sensing scene image dataset which contains 40 real-world
images collected by us from ROVs. It is tough to enhance.

2) Training Details: The network is implemented on
PyTorch and employs RMSprop [22] for model optimization.
In addition, the batchsize and epoch are set to 6 and 100,
respectively. For the first 30 epochs, we set the learning
rate to 0.0001, then 0.0000001 for the remaining epochs.
We normalize all pixels to [−1, 1]. We train UVE-38K, EUVP
and UIEB separately due to the different image mappings.

3) Comparison Methods: To compare the enhanced results
between our Boths and state-of-the-art (SOTA) models, we use
seven deep learning-driven methods: GAN-RS [11], Water-
Net [12], FUnIE-GAN [13], Ucolor [14], LCNet [15], UICoE-
Net [16], LANet [18]; and three prior-driven methods:
MAMF [8], ACS [9], TEBCF [10] for evaluation.

B. Discussion of Complexity

First, we perform a complexity comparison. It is an appro-
priate standard to measure the ability of algorithm deployment.
As shown in Table II, we calculated the parameters and
FLOPs of SOTA and our method. It is noteworthy that the
parameters and FLOPs of Boths (0.0064 M and 0.4256 G,
respectively) are far lower than those of other approaches.
In our view, this relates to our model using 3-D attention.
The parameter of our attention weight generation process is 0,
while that in Ucolor is 2C2/r (C represents the channels, r is
the reduction ratio). As the proposed network is extremely
lightweight, it can be implemented on mobile devices
(e.g., ROV) that do not have a strong computing capability.

C. Quantitative Evaluation

Throughout this part of the experiment, we use metrics of
mse, root mean square error (RMSE), peak signal to noise ratio
(PSNR), structure similarity index measure (SSIM), learned
perceptual image patch similarity (LPIPS) [24] for full-
reference image quality assessment in the UVE-38K, EUVP

1Our MIX benchmark: https://github.com/perseveranceLX/MIX
2Our T40 dataset: https://github.com/perseveranceLX/T40
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TABLE II

ALGORITHM COMPLEXITY COMPARISON, NUMBER HIGHLIGHTED WITH RED, BLUE, AND BROWN TO INDICATE THE BEST THREE RESULTS

TABLE III

QUANTITATIVE RESULTS EVALUATED BY FULL-REFERENCE IMAGE QUALITY ASSESSMENT, NUMBER HIGHLIGHTED

WITH RED, BLUE, AND BROWN TO INDICATE THE BEST THREE RESULTS

TABLE IV

QUANTITATIVE RESULTS EVALUATED BY NO-REFERENCE IMAGE

QUALITY ASSESSMENT, NUMBER HIGHLIGHTED WITH RED,
BLUE, AND BROWN TO INDICATE THE BEST

THREE RESULTS

and UIEB datasets (see Table III), underwater color image
quality evaluation metric (UCIQE) [25], human-visual-system-
inspired underwater image quality measures (UIQM) [26]
for no-reference image quality assessment in the T40, U45,
and C60 datasets (see Table IV). The number in Table IV
represents the average value of three datasets. Among them,
the PSNR and SSIM evaluate the image similarity, and the
other three full-reference metrics evaluate the discrepancy.
UCIQE and UIQM can comprehensively measure the quality
of underwater images. UCIQE relies on CIELab space, which
assesses the color cast, blur, and low contrast. UIQM considers
three attributes when measuring the image quality on the HSV
model-color, sharpness, and contrast. In summary, a compar-
ison of these metrics reveals that our method can adapt to
multiple datasets, and the enhanced results are more similar
to GT with less noise. The brightness, chroma, and contrast
of the enhanced image are better than most models.

D. Qualitative Evaluation

As can be seen from Figs. 3 and 4, we make a full-reference
qualitative performance comparison and a no-reference qual-
itative performance comparison. It is apparent that most
enhanced images processed by SOTA and our algorithm can
improve the visual effect to a certain extent. Comparing the
15 results, it can be seen that our method can better restore the
image detail and balance the image color. Specifically, MAMF
improves the contrast of results, but the image is prone to color

Fig. 3. Full-reference qualitative performance comparison in UVE-38K,
EUVP, and UIEB datasets, GT is the ground truth.

TABLE V

QUANTITATIVE RESULTS OF THE ABLATION STUDY, NUMBER

HIGHLIGHTED WITH RED, BLUE, AND BROWN TO
INDICATE THE BEST THREE RESULTS

cast. After ACS, TEBCF, and GAN-RS enhancement, some
images have a lot of small noise and overexposure. FUnIE-
GAN can not effectively remove haze in the image. Five
learning-driven models (Water-Net, Ucolor, LCNet, UICoE-
Net, and LANet) based on CNN are similar to our network,
but their performances on some images are inferior to ours.
Taken together, these results suggest that the Boths achieves
the best visual effect.

E. Ablation Study
Ablation studies are intended to demonstrate the superiority

of core components in our method. We train and test three
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Fig. 4. No-reference qualitative performance comparison of learning-driven
methods in T40, U45, and C60 datasets.

Fig. 5. Qualitative results of the ablation study, GT means ground truth.
Compared to the partial view, the full-model image has superior visuals.
A lacks some features, B omits high-frequency information, and C shows
unclear outlines and details.

baselines: A) Without FM; B) Without WMSE loss; and
C) Without SD-D + SD-I3A + FM in the UIEB dataset.
Then, we use MSE and LPIPS to test. The quantitative
and qualitative results obtained from the ablation study are
summarized in Table V and Fig. 5. It can be seen that removing
any components in Boths decreases the effect of underwater
image enhancement.

IV. CONCLUSION

Presented in this letter is a novel method for enhancing
underwater images using a super lightweight neural network,
which is suitable for implementing in ROVs. It generates
clear images by interacting structure and detail features, 3-D
attention learning, high- and low-frequency loss functions. The
parameters and FLOPs of our approach are only 0.0064 M and
0.4256 G, respectively. And a large number of quantitative
and qualitative experiments comparing with SOTA methods
demonstrate that our network has a surprising performance
in several datasets. Therefore, the proposed method is super
lightweight but extremely powerful. In future research, our
Boths will be applied on a large scale to power several
underwater robotic vision platforms.
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